Всероссийская олимпиада школьников по химии 2012-2013 уч. г. Муниципальный этап 10 класс

Рекомендации к решению

10-1.

Исходные вещества X и Y – это две соли, которые реагируют между собой в водном растворе с одновременным выделением газа (он улетает при кипячении) и выпадением осадка. Таким образом, описанный опыт может означать случай полного необратимого гидролиза. Он имеет место при сливании растворов солей трехзарядныз катионов (алюминий, хром, железо) и анионов слабых двухосновных кислот (угольная, сернистая, сероводородная). Вещество X содержит элементы третьего периода, это хлорид алюминия $AlCl_3$, а вещество Y содержит еще и кислород - это сульфит натрия Na_2SO_3

При сливании их растворов происходит реакция

$$2AlCl_3 + 3Na_2SO_3 + 3H_2O = 2Al(OH)_3 \downarrow + 3SO_2 \uparrow + 6NaCl$$

Для полного протекания реакции реагенты должны быть взяты в стехиометрических количествах. Обозначим за х количество вещества хлорида алюминия в растворе, тогда количество вещества сульфита натрия составляет 1,5х. Масса 5%-ного раствора AlCl₃ составляет:

 $m(pactbopa AlCl_3) = 133,5x/0,05 = 2670x$

Масса 3%-ного раствора Na₂SO₃ равна:

 $m(pactbopa Na₂SO₃) = 1.5x \cdot 126/0.03 = 6300x.$

Отношение их масс составит

 $m(pаствора AlCl_3)$: $m(pаствора Na_2SO_3) = 2670x$: 6300x = 1: 2,36.

10-2.

Условиям задачи отвечают углекислый и сернистый газы.

Тогда вещество X — это гидрокарбонат или гидросульфит. Средние соли не подходят, так как они либо не разлагаются при прокаливании (карбонаты щелочных металлов, кроме лития), либо разлагаются, но выделяют такой же объем газа, что и при действии кислоты.

M(X)=10/(2.24/22.4)=100 г/моль, это молярная масса гидрокарбоната калия: КНСО $_3$

$$2KHCO_3 = K_2CO_3 + H_2O + CO_2$$

$$KHCO_3 + HC1 = KC1 + H_2O + CO_2$$

$$CO_2 + Ca(OH)_2 = CaCO_3 + H_2O$$

10-3.

а) Все три углеводорода гидрируются в присутствии катализатора с образованием пропана:

$$H_3C$$
— CH = CH_2 + H_2 \longrightarrow H_3C — CH_2 — CH_3 \longrightarrow H_3C — CH_2 — CH_3 \longrightarrow H_3C — CH_2 — CH_3 \longrightarrow OH_2 \longrightarrow OH_3 OH_4 \longrightarrow OH_4 \longrightarrow OH_5 OH_5 \bigcirc OH_5 \bigcirc OH_5 \bigcirc OH_6 \bigcirc

б) Все три углеводорода вступают в реакцию галогенирования с растворами хлора или брома в воде или тетрахлорметане:

$$H_3C$$
 — CH — CH_2 + Br_2 — H_3C — $CHBr$ — CH_2Br — CH_2Br — CH_3C — $CHBr$ — CH_2Br — $CHBr$ — CH_2Br — $CHBr$ — — $CHBr$ — —

в) Все три углеводорода вступают в реакцию гидрогалогенирования:

г) Все три углеводорода гидратируются, но в разных условиях:

$$H_3$$
С—СН=С H_2 + H_2 О — H_2 SO₄ — H_3 С—С H_3 С—С H_4 С—С $H_$

д) Все три углеводорода горят с образованием оксида углерода (IV) и воды:

$$H_3C$$
 — CH — CH_2 + $4,5O_2$ = $3CO_2$ + $6H_2O$
 H_3C — C — CH + $4O_2$ = $3CO_2$ + $2H_2O$
 H_2C — CH_2 + $4O_2$ = $3CO_2$ + $2H_2O$

е) Только для аллена характерна реакция изомеризации:

$$H_2$$
С — CH_2 — CH_2 — CH_3 — C — C — CH_4 Пропин

ж) Только пропин – алкин с концевой тройной связью – проявлет слабые кислотные свойства под действием достаточно сильных оснований:

з) Все три углеводорода полимеризуются, но продукты реакции различны:

$$H_3C$$
— CH = CH_2 P
 CH_2 — $CH(CH_3)$
 n

полипропилен

Полимеризация пропина приводит к образованию полимерных продуктов различного состава в зависимости от условий. Например, пропин в присутствии металлорганических катализаторов превращается в соответствующие производные бензола.

3
$$H_3C$$
— C — CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

1,3,5-триметилбензол

1,2,4-триметилбензол

Аллен при нагревании до ≈ 150 °C образует димеры, тримеры и тетрамеры с четырех членным циклом (С.В. Лебедев).

2
$$H_2C = C = CH_2$$
 t
 $H_2C = C - CH_2$
 $H_2C = C - CH_2$

10-4.

При горении газа в кислороде могут образовываться углекислый и сернистый газы, азот, галогеноводороды. Из них щелочью поглощаются все перечисленные газы, кроме азота. Осадок с хлоридом кальция дают только продукты поглощения щелочью углекислого и сернистого газов, а также фтороводорода. Из них подкисленный раствор перманганата обесцвечивает только сернистый газ. Таким образом, один из продуктов горения — сернистый газ.

$$2KMnO_4 + 5Na_2SO_3 + 3H_2SO_4 = 5Na_2SO_4 + K_2SO_4 + 2MnSO_4 + 3H_2O.$$
 $n(SO_2) = n(Na_2SO_3) = 0.0125$ моль

Данное количество сульфита натрия дает с раствором хлорида кальция такое же количество вещества осадка:

Na₂SO₃ + CaCl₂ = CaSO₃
$$\downarrow$$
 + 2NaCl
m(CaSO₃) = 0,0125·120 = 1,5 Γ

Очевидно, осадок помимо сульфита кальция содержит еще одно вещество массой: $m=2,45-1,5=1,25\ \ \Gamma$

Предположим, что это карбонат кальция, тогда его количество составляет 0,0125 моль.

На его образование затрачено 0,0125 моль СО2

Вариант с фторидом кальция дает 0,016 моль вещества и химического смысла не имеет.

Следовательно, в исходном газе содержится в два раза большее количество углерода и серы (так как раствор разделяли на две равные части).

 $n(SO_2) = 0.025$ моль, $n(CO_2) = 0.025$ моль.

Таким образом, исходный газ содержит равные количества серы и углерода. Его молярная масса равна 60 г/моль, что соответствует формуле COS.

уравнение горения COS:

$$2COS + 3O_2 = 2CO_2 + 2SO_2$$

n(COS) = 0.025 моль, V = 0.56 л (условия нормальные)

10-5.

Нагреем пробирки с порошками на пламени спиртовки. 1) Нитрат аммония плавится, а затем расплав начинает разлагаться, выделяя газ. В выделяющемся газе вспыхивает тлеющая лучинка (спичка)

$$NH_4NO_3 = N_2O + 2H_2O$$

 $2N_2O + C = 2N_2 + CO_2$

2) Хлорид аммония при нагревании разлагается, не плавясь, а в холодной части пробирки осаждается вновь в виде белого налета. Этот процесс можно трактовать как возгонку:

$$NH_4Cl = NH_3 + HCl$$

- 3) Гидрокарбонат натрия при нагревании разлагается, наблюдается вскипание порошка (выделяется углекислый газ), на стенках пробирки образуются капли воды $2NaHCO_3 = Na_2CO_3 + CO_2 + H_2O$
- 4) Сульфат натрия при нагревании не изменяется.
- 5) Сульфат бария при нагревании не изменяется.

Для того, чтобы отличить сульфат натрия от сульфата бария достаточно налить в остывшую пробирку воды.