ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2017–2018 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 8 КЛАСС

1. Мотоциклист выехал из города со скоростью v = 60 км/ч, одновременно ему навстречу из деревни выехал велосипедист со скоростью u. Через время t = 30 мин они встретились. Затем мотоциклист доехал до деревни, и сразу же с удвоенной скоростью поехал назад, и успел в город одновременно с велосипедистом. Найдите скорость велосипедиста u и расстояние S между городом и деревней.

Возможное решение

Из условия второй встречи в городе получим $\frac{S}{u} = \frac{S}{v} + \frac{S}{2v}$. Отсюда $u = \frac{2}{3}v = 40$ км/ч. Из условия первой встречи S = (v + u)t = 50 км.

Критерии оценивания

1.	Выражение для времени движения мотоцикла	1 балл
2.	Выражение для времени движения велосипеда	1 балл
3.	Связь между скоростями велосипеда и мотоцикла	3 балла
4.	Численное значение скорости велосипеда	1 балл
5.	Выражение для расстояния между городом и деревней	3 балла
6.	Численное значение расстояния между городом и деревней	1 балл

2. Петя и Вася решили построить игрушечный дом из деревянных кубиков. В основание они заложили плотно друг к другу 10 больших кубиков со стороной a = 10 см. На строительство самого дома ушло дополнительно 6 больших, 20 средних (со стороной a/2) и 100 маленьких (со стороной a/4) кубиков. Определите давление, которое оказывает дом на пол в игровой комнате, в предположении, что нагрузка распределяется равномерно по основанию. Плотность дерева $\rho = 500$ кг/м³. Ускорение свободного падения принять равным g = 10 м/с².

Возможное решение

Площадь основания дома $S=10a^2=0.10$ м 2 . Масса большого кубика $m_1=\rho a^3=500$ г. Масса среднего кубика меньше в 8 раз и равна $m_2=62.5$ г, масса маленького кубика $m_3=7.8125$ г. Масса всего дома $m=16m_1+20m_2+100m_3=10.03$ кг. Давление на поверхность пола равно $p=\frac{mg}{S}=1003$ Па ≈ 1 кПа.

Критерии оценивания

1. Найдена площадь основания дома 2 балла

2. Найдена масса каждого кубика 3 балла

3. Найдена масса всего дома

2 балла

4. Записано выражение для давления

2 балла

5. Численное значение давления

1 балл

3. Однородное цилиндрическое бревно, имеющее радиус R=20 см, плавает в воде, причем над поверхностью воды выступает 1/4 его объема. Из 8 таких же бревен связали плот (см. рисунок). На какую высоту выступает над водой плавающий плот?

Возможное решение

Из условия следует, что сила Архимеда, действующая на 3/4 объема бревна, уравновешивает его силу тяжести. Это соотношение должно сохраниться и для плота, поскольку бревно и плот состоят из одинакового вещества. Так как высота плота 4R, то глубина погруженной части 3R, а над водой выступает R=20 см, так что доля объема плота над водой как раз и равна 1/4.

Критерии оценивания

- 1. Записано условие плавания одного бревна 2 балла
- 2. Записано условие плавания плота 2 балла
- 3. Отмечено, что доля погруженного объема у бревна и плота одинаковая 3 балла
- 4. Найдена высота выступающей части 3 балла
- **4.** В калориметре содержатся равные массы воды и льда при температуре $t_0 = 0$ °C. В калориметр дополнительно вливают воду, масса которой равна суммарной массе воды и льда, первоначально находившихся в нем. Температура добавленной воды равна $t_1 = 60$ °C. Какая температура t установится в калориметре? Удельная теплоемкость воды $c = 4200 \, \text{Дж/(кг.°C)}$, удельная теплота плавления льда $\lambda = 335 \, \text{кДж/кг}$.

Возможное решение

Уравнение теплового баланса имеет вид: $m\lambda + 2mc(t-t_0) = 2mc(t_1-t)$. Выражая t, получим $t = \frac{2ct_1 - \lambda}{4c} \approx 10$ °C.

Критерии оценивания

- 1. Составлено уравнение теплового баланса 5 баллов
- 2. Получено выражение для конечной температуры 3 балла
- 3. Найдено численное значение конечной температуры 2 балла