
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ АСТРОНОМИЯ. 2023–2024 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 10 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 67.

Задача № 1

На рисунке представлены 12 зарисовок положения Солнца, тонкого серпа Луны и горизонта. На каждой зарисовке подписано время (по местному времени) и стрелкой показано примерное направление, в котором двигалось Солнце для наблюдателя. Размеры Солнца и Луны на картинках искусственно увеличены.

Разделите зарисовки на 4 типа.

- А) Такая картина могла бы наблюдаться на экваторе.
- Б) Такая картина могла бы наблюдаться на Северном полюсе.
- В) Такая картина могла бы наблюдаться в средних широтах Северного полушария.
- Г) Такая картина не может наблюдаться ни в одном из указанных выше пунктов.

Ответ:

A) 3

Б) 8

B) 4, 12

 Γ) 1, 2, 5, 6, 7, 9, 10, 11

Критерии оценивания

За каждый верно распределённый по пунктам номер зарисовки +1 балл. При указании в пункте Γ всех ответов 1-12 за задачу выставляется 0 баллов.

Максимум за задачу 12 баллов.

Задача № 2

Сопоставьте два списка. В одном приведены астрономические объекты, в другом – размеры (диаметры), выраженные в различных единицах.

Объект	Размер
А) галактика Треугольника	1) 19 кпк
Б) Солнце	2) 1 400 000 000 м
B) Mapc	3) 4 радиуса Луны
Г) Луна	4) 3400 км
Д) планетарная туманность	5) 25 000 a. e.
Кошачий глаз	
Е) Земля	6) 8,53·10 ⁻⁵ a. e.
Ж) Уран	7) 8 радиусов Земли
3) ядро кометы	8) 5·10 ⁵ см

Ответ: А-1, Б-2, В-3, Г-4, Д-5, Е-6, Ж-7, З-8

Критерии оценивания

За каждую верную пару +1 балл.

Максимум за задачу 8 баллов.

Задачи № 3-5

На экваторе Земли высота некоторой звезды в верхней кульминации равна 30°.

№3. Чему будет равна высота этой звезды в нижней кульминации? Ответ приведите в градусах и округлите до целого.

Ответ: -30

№4. Через какое время по местным часам после верхней наступит нижняя кульминация?

- 1) 11⁴58^M
- 2) 12⁴00^M
- 3) 12⁴02^M
- 4) 11⁴56^M
- 5) $24^{4}00^{M}$
- 6) 23⁴56^M

№5. Выберите все ошибочные утверждения.

- 1) Эта звезда является незаходящей для всех широт Северного полушария Земли.
- 2) Эта звезда является незаходящей для всех широт Южного полушария Земли.
- 3) Эта звезда является незаходящей для наблюдателя на экваторе Земли.
- 4) Эту звезду нельзя одновременно наблюдать с Северного и Южного полюсов Земли.

Критерии оценивания

№3. За верный ответ +4 балла.

№4. За верный ответ +4 балла.

№5. За каждый верный выбор +1 **балл**. За ошибочный выбор ставится -1 **балл** за каждый пункт.

Решение

На экваторе Земли все звёзды восходят и заходят. Это значит, что у всех звёзд нижние кульминации наблюдаются под горизонтом. Исходя из симметрии картины, для каждой звезды высота в нижней кульминации будет по модулю равна высоте в верхней кульминации, но знак будет «минус», т. е. искомая высота равна -30° .

Этот же ответ можно получить из анализа стандартного рисунка небесной сферы.

Кроме того, можно воспользоваться формулами для высоты в кульминациях. В верхней кульминации $h = 90^{\circ} - \varphi + \delta$ либо $h = 90^{\circ} + \varphi - \delta$. Так как наблюдения проводятся на экваторе, то $\varphi = 0$ и $\delta = h - 90^{\circ}$ либо $\delta = 90^{\circ} - h$. Таким образом, склонение звезды равно либо $+60^{\circ}$, либо -60° .

Высота в нижней кульминации для случая $\phi = 0$ равна $h_{\rm H} = -90^{\circ} \pm \delta$. Подставив в формулу $\delta = +60^{\circ}$ (при этом формуле перед δ надо использовать «+»), получим высоту в нижней кульминации -30° . Подставив $\delta = -60^{\circ}$ (при этом в формуле перед δ надо использовать «-»), получим высоту в нижней кульминации также -30° .

Между одноимёнными кульминациями звёзд проходят ровно одни звёздные сутки. Между разноимёнными кульминациями проходит половина звёздных суток. Как известно, звёздные сутки длятся примерно $23^{4}56^{6}$ по солнечному (т. е. местному) времени. А значит, между верхней и нижней кульминациями звезды пройдёт $11^{4}58^{6}$.

Максимум за задачи 11 баллов.

Задачи № 6-8

Известно, что видимая звёздная величина Солнца равна $-26,8^{\rm m}$, а его абсолютная звёздная величина равна $4,8^{\rm m}$. Светимость некой звезды ровно в 100 раз меньше светимости Солнца.

№6. Чему равна абсолютная звёздная величина этой звезды? Ответ округлите до десятых.

Ответ: 9,8

№7. Каков был бы видимый блеск этой звезды, в случае, если бы она находилась на месте Солнца? Различием цветов звёзд пренебречь. Ответ округлите до десятых.

Ответ: -21,8

№8. Во сколько раз эта звезда должна быть ближе к Земле, чем Солнце, чтобы её видимая звёздная величина была равна солнечной? Различием цветов звёзд пренебречь.

- 1) 2,5
- 2) 2,512
- 3) 3,16
- 4) 10
- 5) 25
- 6) 100
- 7) 251,2

Критерии оценивания

№6. За верный ответ +**5 баллов**.

№7. За верный ответ +5 баллов.

№8. За верный выбор +2 балла.

Решение

Известно, что разность в 5 звёздных величин соответствует изменению освещённости в 100 раз. Эту величину можно (но это не обязательно) получить из формулы Погсона: $m_2-m_1=2,5\lg\frac{L_1}{L_2}$.

Так как звезда по условию в 100 раз слабее Солнца, то и абсолютный, и видимый её блеск будет на 5 звёздных величин слабее, чем у Солнца: видимый блеск будет равен $-21,8^{\rm m}$, абсолютный - будет равен $9,8^{\rm m}$.

Известно, что количество энергии, приходящее от звезды на единицу площади, обратно пропорционально квадрату расстояния до неё. Поэтому для компенсации указанного в условии отличия светимостей звёзд, необходимо переместить источник излучения на расстояние в $\sqrt{100} = 10$ раз меньшее.

Максимум за задачи 12 баллов.

Задачи № 9-11

В настоящее время длительность лунного месяца примерно равна 29.5 суток.

№9. Какой станет продолжительность лунного месяца, если величина орбитального периода Земли увеличится на 20%, а период осевого вращения Земли и период обращения Луны вокруг Земли (P = 27,3 суток) не изменятся? Ответ приведите в сутках и округлите до десятых.

Ответ: 29,1

№10. Какой станет продолжительность лунного месяца, если период осевого вращения Луны увеличится на 20%, а период осевого вращения Земли и период обращения Луны вокруг Земли (P = 27,3 суток) не изменятся? Ответ приведите в сутках и округлите до десятых.

Ответ: 29,5

№11. Какой станет величина большой полуоси орбиты Земли, если величина орбитального периода Земли увеличится на 20%? Ответ приведите в астрономических единицах и округлите до сотых.

Ответ: 1,13

Критерии оценивания

№9. За попадание в интервал [29;29,2] +4 балла.

№10. За точное совпадение с ответом +4 балла.

№11. За попадание в интервал [1,12;1,13] +4 балла.

Решение

Продолжительность лунного месяца T — это период смены лунных фаз (например, время между двумя последовательными полнолуниями). Его длительность зависит и от значения орбитального периода Земли $P_{\oplus} = 1,2\cdot 1$ лет, и от значения орбитального периода Луны P. Вычислить T можно по формуле для синодического периода:

$$\frac{1}{T} = \frac{1}{P} - \frac{1}{P_{\oplus}}$$

Отсюда $T \approx 29,1$ суток.

От величины осевого периода вращения Луны период смены лунных фаз (синодический период обращения Луны вокруг Земли) не зависит. Соответственно, из-за его увеличения на 20% продолжительность лунного месяца не изменится.

С изменением величины орбитального движения Земли изменится и размер её орбиты. Известно, что размер орбиты связан с периодом обращения через 3-й закон Кеплера. В данном случае его можно записать в наиболее простом виде: $a^3 = T^2$, где a — большая полуось орбиты (в а. е.), а T — период обращения, выраженный в современных земных годах. Отсюда $a = \sqrt[3]{T^2} = \sqrt[3]{1.2^2} = 1.13$ а.е.

Максимум за задачи 12 баллов.

Задачи № 12-14

Недавно в СМИ была опубликована новость об открытии расширяющейся с постоянным уменьшением скорости расширения газовой оболочки — остатка вспышки Сверхновой в Большом Магеллановом Облаке (расстояние от Солнца до остатка 50 кпк). Вспышка должна была бы наблюдаться на Земле 400 лет назад (но астрономы тех времён её не заметили). Диаметр оболочки в момент открытия составил 23 световых года, а скорость расширения оболочки — 17 млн км/ч.

№12. Запишите скорость расширения оболочки в метрах в секунду. Ответ округлите до целых.

Ответ: 4722222

№13. Запишите угловой диаметр оболочки в момент открытия. Ответ запишите в угловых секундах и округлите до целых.

Ответ: 29

№14. Чему равен угловой диаметр оболочки через 200 лет после вспышки? Ответ запишите в угловых секундах и округлите до целых.

Ответ: 18

Критерии оценивания

№12. За попадание в интервал [4720000;4723000] +2 балла.

№13. За попадание в интервал [28;30] +4 балла.

№14. За попадание в интервал [16;19] +6 баллов.

Решение

№ 12. Переведём все численные значения из условия задачи в единицы СИ.

- Расстояние до остатка $d = 50 \text{ кпк} = 50000 \cdot 206265 \cdot 1,5 \cdot 10^{11} \text{м} = 1,55 \cdot 10^{21} \text{ м}$ (тут использован тот факт, что в 1 пк содержится 206265 а. е. Можно использовать соотношение $1 \text{ пк} \approx 3,08 \cdot 10^{16} \text{ м}$, можно воспользоваться определением парсека и из него получить эти величины).
- Диаметр оболочки $D = 23 \cdot 365,25 \cdot 24 \cdot 3600 \cdot 3 \cdot 10^8 \text{м} = 2,18 \cdot 10^{17} \text{м}.$
- Скорость расширения оболочки в настоящее время:

$$V = 17 \cdot \frac{10^6 \cdot 1000}{3600} \approx 4,72 \cdot 10^6 \text{ m/c}.$$

• Возраст остатка $T_0 = 400 \cdot 365,25 \cdot 24 \cdot 3600 = 1,26 \cdot 10^{10}$ с.

№ 13. Угловой диаметр оболочки в радианах легко найти, разделив линейный размер объекта на расстояние до него. Для перехода от радианов к угловым секундам воспользуемся числом секунд в радиане: 206265.

•
$$\rho_0 = \frac{D}{d} = \frac{2,18 \cdot 10^{17}}{1.55 \cdot 10^{21}} \approx 1.41 \cdot 10^{-4} \text{ рад } \approx 29''.$$

№ 14. Так как расширение оболочки происходит с замедлением, то для того чтобы ответить на 2-й вопрос задачи, нельзя просто разделить наблюдаемый сейчас (т. е. спустя 400 лет после вспышки сверхновой) угловой радиус оболочки пополам — вещество оболочки двигалась все эти годы с постепенно снижающейся скоростью. Чтобы найти радиус оболочки надо найти ускорение, с которым движется разлетающееся вещество (по условию задачи движение равноускоренное).

Запишем 2 уравнения для равноускоренного движения, известные нам из курса физики:

$$x = x_0 + V_0 t + \frac{at^2}{2}$$
 и $V = V_0 + at$.

x=D/2 и V — радиус оболочки и скорость её расширения в момент $t=T_0=400$ лет, V_0 — скорость в начале расширения, a — ускорение, x_0 — радиус взорвавшейся звезды, с поверхности которой начался разлёт оболочки (этой величиной можно пренебречь по сравнению с огромными размерами оболочки в конце).

Решая систему этих уравнений, можно получить и ускорение a, и скорость в начале разлёта V_0 :

$$V_0 = \frac{2x}{t} - V$$
 и $a = \frac{2(x - V_0 t)}{t^2}$
 $V_0 = 1,26 \cdot 10^7 \text{м/c}$
 $a = -6,27 \cdot 10^{-4} \text{ м/c}^2$.

Вернёмся к определению размера оболочки через t=200 лет после вспышки. Линейный радиус оболочки будет равен: $x = x_0 + V_0 t + \frac{at^2}{2} = 6,69 \cdot 10^{16}$ м (величиной x_0 мы пренебрегли).

Угловой радиус оболочки через 200 лет после вспышки был равен: $\rho = \frac{x}{d} = 4,32 \cdot 10^{-5}$ рад = 8,9". Соответственно, угловой диаметр будет вдвое больше — примерно 18".

Примечание: в авторском решении на каждом следующем шаге использовались полученные ранее данные с 2-мя значащими цифрами. Однако если проводить вычисления без округлений на промежуточных шагах, то ответы могут отличаться в последнем знаке.

Максимум за задачи 12 баллов.

Максимальный балл за работу - 67.