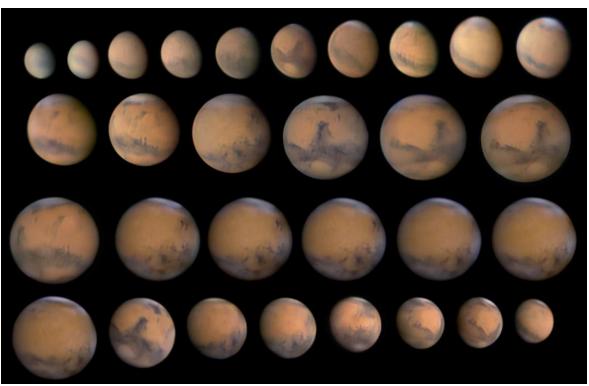
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ АСТРОНОМИЯ. 2023–2024 уч. г. ШКОЛЬНЫЙ ЭТАП. 11 КЛАСС

Максимальное количество баллов — 100.

Задания 1-4

27 июля 2018 года состоялось полное лунное затмение. Оно оказалось примечательным по двум причинам. Во-первых, это самое длинное полное лунное затмение в XXI веке. Во-вторых, в момент затмения Луна наблюдалась на земном небе рядом с Марсом. Расстояние от Марса до Солнца в тот день составляло 1.40 а. е.



- 1) Определите расстояние от Марса до Земли в тот день. Орбиту Земли считайте круговой. Ответ выразите в астрономических единицах, округлите до десятых.
- 2) Как называется конфигурация, в которой Марс и Земля при наблюдении с Солнца оказываются примерно на одном луче на минимальном расстоянии друг от друга?
 - Великое противостояние
 - Уникальное происшествие
 - Редкое явление
 - Удобное событие
 - Знаменательное совпадение

- 3) Когда наступило ближайшее после того дня новолуние?
 - 1 апреля
 - 28 июня
 - 13 июля
 - 11 августа
 - 26 августа
 - 25 сентября
- 4) В каком созвездии наблюдался Марс?
 - Козерог
 - Телец
 - Близнецы
 - Овен
 - Рак

Задания 5-7


Земля и Марс обращаются вокруг Солнца по близким к круговым орбитам, лежащим примерно в одной плоскости. Расстояние между Землёй и Марсом из-за их орбитального движения изменяется, вследствие чего видимый угловой размер Марса на земном небе тоже варьирует. На изображении представлены фотографии Марса, сделанные в 2007–2008 годах с одинаковым масштабом.

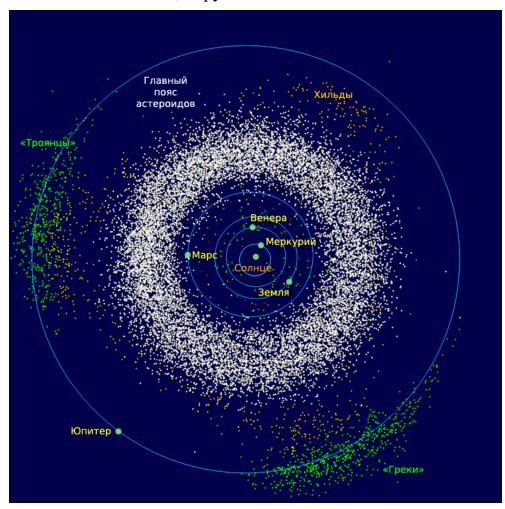
- 5) Используя предложенное изображение, определите, во сколько раз наибольший видимый угловой размер Марса превышает наименьший. Ответ округлите до десятых.
- 6) Считая, что изображение охватывает весь возможный диапазон видимых размеров Марса, определите радиус его орбиты. Ответ выразите в астрономических единицах, округлите до десятых.
- 7) Почему вид поверхности Марса отличается на разных фотографиях?
 - Марс вращается вокруг своей оси, как и Земля, так что в моменты съёмки видны разные части поверхности Марса.
 - В атмосфере Марса возникают мощные облака, которые видны как тёмные образования на снимках.
 - В действительности вид поверхности Марса на разных фотографиях совершенно одинаковый, Марс всегда обращён к Земле одной стороной.
 - На Марсе очень сильный вулканизм, из-за чего рельеф успевает поменяться в промежутке между очередными кадрами.

Задания 8-10

Эта картинка — коллаж серии изображений «двойного прохождения», полученных 8 июня 2004 года. На снимках запечатлена Международная космическая станция (МКС) и планета на фоне диска Солнца.

- 8) Что это за планета?
 - Венера
 - Mapc
 - Юпитер
 - Сатурн
- 9) «Двойное прохождение» наблюдалось в узкой полосе на Земле в течение весьма непродолжительного времени. Смонтированные кадры снимались с промежутками всего в 0.033 секунды. Определите видимую угловую скорость МКС. Диаметр Солнца составляет около 0.5°. Ответ выразите в градусах за секунду, округлите до целых.
- 10) Почему видимые угловые размеры МКС и планеты оказались сопоставимы?
 - МКС гораздо меньше планеты, но при этом гораздо ближе к наблюдателю.
 - МКС величайшее сооружение человечества, имеющее в действительности размеры Меркурия.
 - Это оптическое явление, аналогичное искажению форм объектов в потоке воздуха над костром.
 - МКС движется столь быстро, что её видимые размеры увеличиваются.

Задания 11-13


Земля обращается вокруг Солнца по круговой орбите с орбитальной скоростью 30 км/с, совершая один оборот за год. Свет в вакууме движется в 10 тысяч раз быстрее, чем Земля по своей орбите.

1 астрономическая единица = 150 млн км.

11) За какое время свет преодолевает расстояние от Солнца до Юпитера? Ответ выразите в секундах, округлите до целых.

Примечание: длина окружности больше её радиуса в $2\pi \approx 6.28$ раз.

12) Троянские астероиды Юпитера — это две крупные группы астероидов, каждая из которых вместе с Солнцем и Юпитером образует равносторонний треугольник. Радиус орбиты Юпитера — 5.2 астрономических единицы. Определите минимальное расстояние от Земли до троянцев. Ответ выразите в астрономических единицах, округлите до десятых.

13) Определите средний период обращения троянцев вокруг Солнца. Ответ выразите в годах, округлите до десятых.

Задание 14

Установите соответствие между объектами и их характерными средними плотностями.

Земля	$7\cdot 10^2$ кг/м 3
Сатурн	$1.4 \cdot 10^3$ кг/м 3
Солнце	10^{17}кг/м^3
Вселенная	$5 \cdot 10^3$ кг/м 3
Нейтронная звезда	10^{-26} kg/m^3

Задания 15-17

Экваториальный наблюдатель заметил, что в 21:00 точно на северо-востоке взошла яркая звезда. При решении этой задачи рефракцией и отличием реального горизонта от математического можно пренебречь.

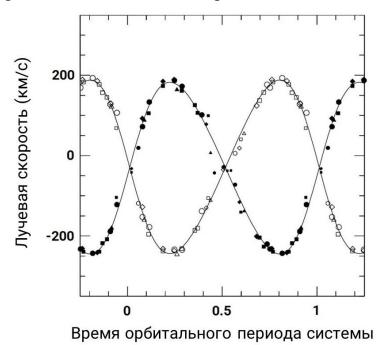
- 15) На какой высоте эту звезду возможно было наблюдать той же ночью в 03:00? Ответ выразите в градусах, округлите до целых.
- 16) Определите астрономический азимут этой звезды в 03:00 той же ночи. Ответ выразите в градусах, округлите до целых.
- 17) Во сколько можно ожидать заход этой звезды на следующий день? Ответ запишите в формате ЧЧ:ММ, округлите до минут.

Задание 18

Расположите диапазоны электромагнитного излучения в порядке увеличения длины волны.

- Радиоизлучение
- Инфракрасное излучение
- Видимое излучение
- Ультрафиолетовое излучение
- Рентгеновское излучение

Задания 19-21


Луна меньше Земли в 3.6 раза по размеру, при этом легче в 81 раз.

- 19) Определите среднюю плотность Земли, если средняя плотность Луны составляет $3.4 \, \Gamma/\text{см}^3$. Ответ выразите в $\Gamma/\text{см}^3$, округлите до десятых.
- 20) Во сколько раз первая космическая скорость для Луны меньше земной? Ответ округлите до десятых.

- 21) Средняя плотность земной коры составляет около 3 г/см³. Сделайте вывод:
 - Земная кора в среднем плотнее мантии и ядра.
 - Мантия и ядро в среднем плотнее земной коры.
 - Мантия в среднем плотнее ядра Земли.
 - Невозможно сделать вывод о распределении массы по средней плотности.

Задания 22-23

На графике представлена зависимость лучевых скоростей (проекций скоростей звёзд на луч зрения) компонентов двойной звёздной системы от времени. Чёрные и белые отметки относятся соответственно к одному из двух компонентов системы. По горизонтальной оси отложено время в долях орбитального периода системы, по вертикальной — лучевые скорости компонентов, выраженные в км/с. Для удобства для каждого из рядов данных проведена сглаживающая кривая.

22) Определите амплитуду — половину размаха — колебаний лучевой скорости компонента, которому соответствуют белые отметки. Ответ выразите в км/с, округлите до целых.

- 23) Как соотносятся между собой массы компонентов системы?
 - Массы примерно равны.
 - Масса первого вдвое больше массы второго.
 - Масса второго вдвое меньше массы первого.
 - Масса первого втрое больше массы второго.
 - Масса второго втрое меньше массы первого.
 - Невозможно определить.
- 24) Предположим, что плоскости орбит компонентов системы лежат на луче зрения. Период обращения компонентов системы составляет 24 часа. Определите радиус орбиты «белого» компонента относительно центра масс системы. Ответ выразите в миллионах километров, округлите до целых.

Задание 25

Установите соответствие между физическими и астрономическими величинами и единицами их измерения.

Светимость	Тесла
Индукция магнитного поля	Парсек
Расстояние	Ватт
	Светимость Солнца
	Гаусс

Максимальное количество баллов — 100.