ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ТРУД (ТЕХНОЛОГИЯ). ПРОФИЛЬ «РОБОТОТЕХНИКА» 2024–2025 УЧ. Г. ШКОЛЬНЫЙ ЭТАП. 9 КЛАСС

Практический тур

Необходимое оборудование и требования к нему

- ArduinoUNO или аналог 1 шт.;
- компьютер с установленной средой программирования ArduinoIDE;
- макетная плата (170 контактов и более) 1 шт.;
- потенциометр 1 шт.;
- резистор 220 Ом 6 шт.;
- резистор 10 кОм 2 шт.;
- светодиод 6 шт.;
- кнопка тактовая –2 шт.

Иные компоненты при необходимости (участник может использовать дополнительные электронные компоненты при необходимости).

Практическое задание может быть выполнено в симуляторе Wokwi https://wokwi.com, электронной лаборатории МЭШ или иных симуляторах. Так же задание может быть выполнено с использованием электронных компонентов и контроллера.

Задание

Педагог по робототехнике решил разработать устройство, помогающее изучить перевод из десятичной в двоичную систему счисления. Система состоит из потенциометра, с помощью которого можно ввести число от 0 до 63 и отобразить его в десятичной системе на мониторе компьютера и в двоичном виде на шести светодиодах, где 0 — светодиод выключен, 1 — светодиод включён.

Необходимо собрать устройство, состоящее из шести светодиодов, расположенных в ряд (6 бит), и двух нумерованных кнопок и написать для него программу, работающую по следующему алгоритму:

- перед началом испытания участник сообщает расположение младшего бита. При запуске программы система переходит в режим инициализации: светодиоды последовательно включаются от младшего бита к старшему с паузой в 500 мс, после завершения инициализации все светодиоды выключаются;
- устройство переходит в режим ввода числа;
- поворотом потенциометра пользователь может изменять число от 0 до 63. Текущее значение выводится в SerialPort в десятичном виде. Число вводится таким образом, что в крайнем левом положении потенциометра число 0, в крайнем правом 63. При вращении потенциометра слева направо, число плавно увеличивается, при вращении обратно уменьшается;

- при вводе числа светодиоды не должны светиться;
- при нажатии на кнопку № 1 система отображает данное число в двоичной системе счисления на шести светодиодах (где 0 светодиод выключен, 1 светодиод включён);
- при изменении положения потенциометра все светодиоды выключаются, и система переходит в режим ввода числа;
- при нажатии на кнопку № 2 система переходит в режим инициализации для проверки работоспособности светодиодов, и светодиоды последовательно включаются от младшего бита к старшему с паузой в 500 мс, после завершения инициализации все светодиоды выключаются, и система возвращается в режим ввода числа. *Режим инициализации можно запустить только во время режима ввода числа*.

Составьте структурную схему электрических соединений, собранного вами устройства.

Методика тестирования устройства

- 1. При запуске программы светодиоды последовательно включаются через временную паузу, затем все светодиоды выключаются. Результат фиксируется.
- 2. После запуска программы необходимо повернуть потенциометр из одного крайнего положения в другое, в SerialPort при этом должны отображаться числа от 0 до 63 последовательно и равномерно. Результат фиксируется.
- 3. Проверяющий выбирает случайное число в диапазоне от 0 до 63 и просит участника ввести его и нажать на кнопку. Число в двоичном виде отображается на светодиодах. Результат фиксируется.
- 4. При изменении положения потенциометра все светодиоды выключаются, и система переходит в режим ввода числа. Результат фиксируется.
- Устройство переводится в режим ввода данных. Нажимается кнопка № 2.
 Устройство должно перейти в режим инициализации. Результат фиксируется.
- 6. Оцениваются программа, схема (см. Приложение) и сборка устройства.

На выполнение практического задания участнику отводится 120 минут. За это время ему предоставляются 2 попытки для сдачи задания. Участник может сообщить о своём желании сделать зачётную попытку в любой момент в течение отведённых 120 минут. Время тестирования не входит во время подготовки (120 минут). Если по истечении времени подготовки участник не сделал ни одной попытки, то производятся сразу две попытки подряд.

В зачёт идёт результат лучшей из попыток.

Критерии оценки

No	Действие	Баллы			
1	При запуске программы происходит инициализация: все	3			
	светодиоды последовательно включаются через временную				
	паузу, после все светодиоды выключаются				
2	При вращении потенциометра в SerialPort выводятся				
	последовательно числа от 0 до 63				
3	При нажатии на кнопку № 1 на светодиодах отображается				
	число, выбранное проверяющим, в двоичном виде				
4	При изменении положения потенциометра все светодиоды	4			
	выключаются, и система переходит в режим ввода числа				
5	При нажатии на кнопку № 2 происходит инициализация:	4			
	все светодиоды последовательно включаются через				
	временную паузу, после все светодиоды выключаются				
6	Код программы оптимизирован	4			
	(в коде используются циклы, ветвления, арифметические				
	операции остаток от деления и целочисленное деление)				
7	Читаемость кода (наличие комментариев к основным	3			
	блокам кода, информативные имена переменных,				
	выделение отступами циклов и т. д.). Возможно				
	выставление частичных баллов за критерий				
8	Составлена принципиальная схема электрических	6			
	соединений собранного устройства.				
	Возможно выставление частичных баллов. См. рекомендации				
9	Устройство собрано верно и аккуратно.	3			
	(Использованы разноцветные перемычки для соединения				
	контактов компонентов, отсутствуют ошибки при				
	подключении компонентов, соединения выполнены				
	должным образом).				
	Возможно выставление частичных баллов за критерий				
	Итого	35			

Индивидуальный протокол участника

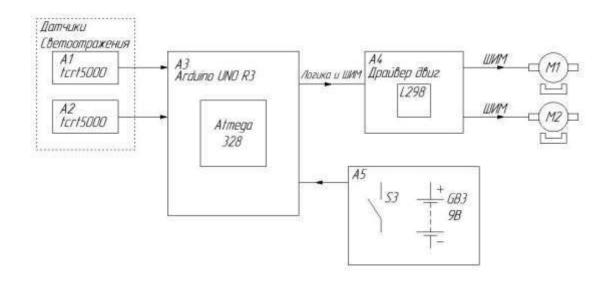
№ участника_____

No	Критерии	Макс	1	2	
		баллы	попытка	попытка	
1	При запуске программы происходит	3			
	инициализация: все светодиоды последо-				
	вательно включаются через временную				
	паузу, после все светодиоды выключаются				
2	При вращении потенциометра в SerialPort	3			
	выводятся последовательно числа от 0 до 63				
3	При нажатии на кнопку № 1 на светодиодах	5			
	отображается число, выбранное				
	проверяющим в двоичном виде				
4	При изменении положения потенциометра	4			
	все светодиоды выключаются, и система				
	переходит в режим ввода числа				
5	При нажатии на кнопку № 2 происходит	4			
	инициализация: все светодиоды последо-				
	вательно включаются через временную				
	паузу, после все светодиоды выключаются				
6	Код программы оптимизирован	4			
	(в коде используются циклы, ветвления,				
	арифметические операции остаток от				
	деления и целочисленное деление)				
7	Читаемость кода (наличие комментариев к	3			
	основным блокам кода, информативные				
	имена переменных, выделение отступами				
	циклов и т. д.). Возможно выставление				
	частичных баллов за критерий				
8	Составлена принципиальная схема	6			
	электрических соединений собранного				
	устройства. Возможно выставление				
	частичных баллов. См. рекомендации				
9	Устройство собрано верно и аккуратно	3			
	(Использованы разноцветные перемычки для				
	соединения контактов компонентов,				
	отсутствуют ошибки при подключении				
	компонентов, соединения выполнены				
	должным образом). Возможно выставление				
	частичных баллов за критерий				
	Итого за попытку				
	Итого за задание				

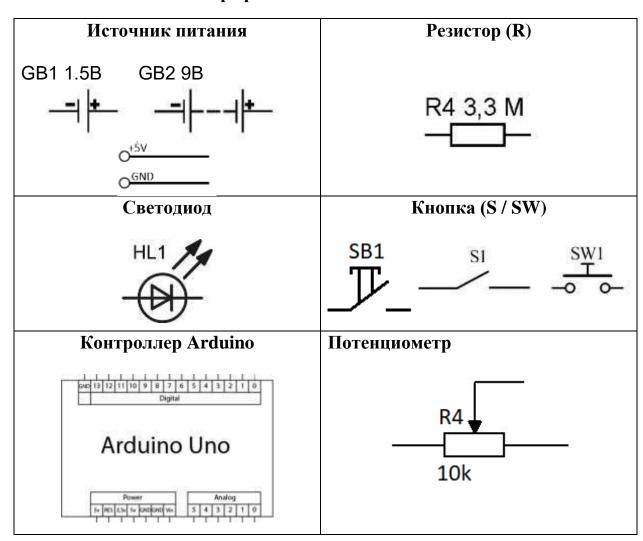
В зачёт идёт результат лучшей из попыток.

Рекомендации по составлению и оценке электрической схемы

Электрическая структурная схема — документ, определяющий функциональные части изделия, их назначение и взаимосвязь, служит для общего ознакомления с устройством.


На структурной схеме изображаются все основные функциональные элементы и основные взаимосвязи между ними.

- 1. Схема должна соответствовать устройству участника (должны быть использованы все элементы, оговорённые в задании).
- 2. В схеме используются верные графические обозначения элементов (см. Условные графические обозначения элементов).
- 3. Функциональные части на схеме изображаются в виде прямоугольников или в виде УГО (например: резистор, кнопка, светодиод и др.). Рекомендуемое соотношение сторон прямоугольников: 1:1,5; 1:2.
- 4. Все соединения проводников обозначаются точкой. Отсутствие точки говорит о том, что проводники не соединяются.
- 5. Все соединения выполняются горизонтальными и вертикальными линиями, повороты под углом 90° , пересечения проводников под углом 90° .
- 6. Функциональные части и линии электрической связи следует выполнять сплошными линиями одинаковой толщины.
- 7. Направление электрических сигналов в структурной схеме рекомендуется указывать стрелками.


По одному баллу можно снизить за каждую из следующих ошибок:

- на схеме не указаны наименования функциональной части устройства;
- использовано неверное графическое изображение одного типа элементов;
- схема выполнена небрежно, неаккуратно. Большое количество исправлений, линии не ровные, разной толщины.

Пример выполнения схемы электрической структурной

Условные графические обозначения элементов:

Максимальный балл за работу – 35.