
Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Всероссийская олимпиада школьников по информатике 2025–2026

Региональный этап

Разбор задач

Задача 1. Итоги олимпиады
Заметим, что задачу сформулировать по-другому: для каждой пары индексов (i, j) найдем ве-

личину max(aj − ai, 0). Необходимо вычислить сумму этих значений для всех пар (i, j).

Подзадача 1

Заметим, что при 1 ⩽ n ⩽ 1 000 можно с помощью вложенного цикла для каждого индекса i
от 0 до n − 1 перебрать все индексы j от 0 до n − 1 и для всех возможных пар (i, j) суммировать
max(aj − ai, 0).

Асимптотика такого решения O(n2).

Подзадача 2

Если все ai одинаковые, то нужная сумма равна 0.

Подзадача 3

В этом случае массив из входных данных представляет собой перестановку чисел от 1 до n.
Для такого массива школьник с n баллами получил за школьника с одним баллом n−1 конфету, за
школьника с 2 баллами n−2 конфету, и т.д. За школьника с n−1 баллом он получит 1 конфету. Таким
образом, школьник с n баллами получит (n−1)·n

2 конфет — сумму чисел от 1 до n− 1. Школьник с
n− 1 баллами получит от 1 до n− 2 конфет за каждого школьника с меньшим количеством баллов,
чем у него, то есть (n−2)·(n−1)

2 конфет, школьник с n − 2 баллами (n−3)·(n−2)
2 конфет и так далее.

Школьник с одним баллом не получит конфет. Таким образом, для получения итогового ответа
нужно посчитать сумму

∑n−1
i=1

i·(i+1)
2

Асимптотика такого решения O(n).

Подзадача 4

Если 0 ⩽ ai ⩽ 1, то массив состоит только из единиц и нулей. В таком случае конфеты полу-
чают только те школьники, которые получили один балл, причем они получают по одной конфете
за каждого школьника с нулём баллов. Пусть cnt0 — количество школьников с нулём баллов, коли-
чество школьников с одним баллом тогда n− cnt0. Количество школьников с нулем баллов можно
посчитать одним проходом по массиву. Тогда ответом на подзадачу будет cnt0 · (n− cnt0).

Асимптотика такого решения O(n).

Подзадача 5

В этой подзадаче массив может быть большим, а значения элементов в нем маленькие. Создадим
массив cnt размером 101, где cnt[i] — количество элементов со значением i в массиве a. Такой массив
можно создать, например, вот так:
cnt = [0] * 101
for x in a:

cnt[x] += 1
После чего для всех i от 1 до 100 переберем j от 0 до i−1 прибавим к сумме (i−j) ·cnt[i] ·cnt[j] —

каждый участник с i баллами получит i−j конфет за каждого участника с j баллами. Такой подсчет
будет работать за O(len(cnt)2), но len(cnt)2 = 1012 ⩽ n.

Таким образом, асимптотика такого решения O(n).

Страница 1 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Подзадача 6

Эта подзадача аналогична подзадаче 4. Массив состоит из не более двух различных значений x
и y. Пусть x ⩽ y. В таком случае конфеты получат только те школьники, которые имеют y баллов,
получат они y − x конфет. Пусть cntx — количество школьников, у которых x баллов, количество
школьников, у которых y баллов, тогда n−cntx. Количество школьников, у которых x баллов, можно
посчитать одним проходом по массиву. Тогда ответом на подзадачу будет cntx · (n− cntx) · (y − x).
Если x = y, то ответ получится 0.

Асимптотика такого решения O(n).

Подзадача 7

Заметим, что для каждой пары индексов i и j, где ai > aj , конфеты получит только школьник
i, причем получит он ai− aj конфет. Это значение при этом не зависит от положения школьников в
исходном массиве, поэтому отсортируем массив a по неубыванию. Рассмотрим школьника с индексом
i в отсортированном массиве: он получит ai−a0+ai−a1+ · · ·+ai−ai−1 = i ·ai−

∑i−1
j=0 aj . Посчитать

такую сумму для каждого i можно за один проход по массиву: значение
∑i−1

j=0 aj — это префиксная
сумма элементов на полуинтервале [0, i). Количество элементов, меньших ai, в отсортированном
массиве a будет i.

Итоговое решение выглядит так:
n = int(input())
a = list(map(int, input().split()))
a.sort()
res = 0
pref_s = 0
for i in range(n):
#Добавим к ответу значение для индекса i

res += i * a[i] - pref_s
#Увеличим префиксную сумму для следующего элемента

pref_s += a[i]
print(res)

Асимптотика такого решения O(n).

Задача 2. Хромой король
Обозначим за n длину горизонтальной стороны, а m — вертикальной. Также упорядочим клетки,

пусть x1 ⩽ x2; y1 ⩽ y2.
Рассмотрим несколько случаев:

• Если n и m — нечетные, то цикла, проходящего по всем клеткам, не существует.

• Если одна из сторон равняется 2, пусть n = 2, то для такой доски существует ровно два обхода,
которые различаются только направлением движения.

Поэтому построить обход можно только для отрезков, попадающих в этот путь.

Страница 2 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

• Если одна из сторон равняется 3, пусть n = 3. Пусть также x1 = x2 = 2.

Покрасим доску в шахматную раскраску, а потом разделим её на 3 части. Заметим, что, про-
ходя по циклу, мы пересечём каждую пунктирную линию ровно два раза. Значит, из белой
клетки нашего отрезка мы должны пойти либо вверх, либо вниз.

Допустим, мы пошли наверх и оказались в черной клетке. Далее из этой клетки мы перейдем
пунктирную линию и будем обходить одну из отрезанных частей. Если в этой части четное
число клеток, то при выходе из неё мы должны оказаться в клетке противоположного цвета,
то есть белого. Однако это не так.

Значит, если при разбиении доски пунктирными линиями крайние части имеют чётное число
клеток(то есть y1 — нечетное), цикл построить не удастся.

Если же крайние части состоят из нечетного числа клеток, можно сделать обход «змейкой».

Теперь покажем, как построить путь в остальных случаях. Пусть n,m ⩾ 4, n — четное:

• Если наш отрезок расположен горизонтально, или он лежит в первом или последнем столбце
доски, воспользуемся обходом «змейкой».

Заметим, что каждый горизонтальный отрезок попадет хотя бы в одну из этих «змеек».

Страница 3 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

• Если m — четное, отрезок расположен вертикально, можно аналогично воспользоваться обхо-
дом «змейкой».

• Остался случай, когда m —нечетное, отрезок расположен вертикально, отрезок не лежит в
первом и последнем столбце.

Разобьем нашу доску на 2 части так, чтобы каждая состояла хотя бы из двух столбцов и в
одной из них наш отрезок лежал с краю. Мы всегда сможем так сделать, поскольку m ⩾ 4 и
отрезок лежит не с краю. Заметим, что каждую из этих частей мы можем обойти «змейкой».

Объединим эти два обхода, и получим цикл для всей доски.

Задача 3. Расстановки фишек

Подзадача 1. n ⩽ 10,m ⩽ 4. В этой подзадаче достаточно полного перебора за 2m×m.

Подзадача 2. n = 1,m ⩽ 1000. В этой подзадаче достаточно заметить, что среди r1 · c1 клеток
может быть выбрано не более одной, то есть всего на этом подпрямоугольнике (r1+1)(c1+1) способов.
А оставшиеся m2 − r1 · c1 могут как входить, так и нет. Поэтому, ответ равен (r1 +1)(c1 +1)2m

2−r1c1

Страница 4 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Подзадача 3. n ⩽ 10,m ⩽ 1000. Для решения этой подзадачи можно для каждого подмновества
ограничений посчитать число способов, которые покравают это подмножество. Дальше с помощью
динамического программирования на подмножествах посчитать итоговый ответ. Здесь можно было
реализовать решение за O(4n).

Подзадача 4. n ⩽ 15,m ⩽ 109. Здесь то же самое, как в предыдущей подзадаче, но необходи-
мо быть более эффективным для подсчета количества точек для фиксированного подмножества
ограничений. Например, можно было воспользоваться методом включений исключений за O(3n).

Подзадачи 5–10 Для решения остальных подзадач сначала упростим набор ограничений. Если
существуют два ограничения (ri, ci) и (rj , cj) такие, что ri ⩽ rj и ci ⩽ cj , то первое из них избыточ-
но, поскольку соответствующий прямоугольник полностью содержится во втором. Отсортируем все
ограничения по возрастанию r, а при равенстве — по возрастанию c, и пройдём по ним монотонным
стеком, поддерживая строго убывающую последовательность по c. В результате останется набор
ограничений, для которого выполняется

r1 ⩽ r2 ⩽ . . . ⩽ rn, c1 ⩾ c2 ⩾ . . . ⩾ cn.

После этого каждую клетку доски можно охарактеризовать следующим образом: либо она не
покрыта ни одним ограничением, либо она покрыта непрерывным отрезком ограничений [i, j]. Если
выбрать две клетки, чьи отрезки ограничений пересекаются, то найдётся ограничение, покрывающее
обе клетки, а значит в соответствующем прямоугольнике окажутся две фишки, что запрещено.
Поэтому допустимы только такие наборы клеток, у которых отрезки ограничений не пересекаются.

Клетки, не покрытые ни одним ограничением, полностью независимы от остальных: в каждой
из них фишку можно либо поставить, либо нет. Если таких клеток K, то они дают множитель 2K

к ответу.
Для остальных клеток будем считать, что каждая из них соответствует отрезку [i, j]. Обозначим

через cnt[i][j] количество клеток, которые покрыты ровно ограничениями с i по j. Перебирать клетки
напрямую возможно для прохождения подзадач 5–7 (отрезок для клетки можно найти бинарным
поиском), для остальных можно заметить, что cnt[i][j] легко считается по формуле включения–
исключения. Количество клеток, лежащих в прямоугольнике [1..r] × [1..c], равно r · c, поэтому при
1 ⩽ i ⩽ j ⩽ n

cnt[i][j] = (rjci)− (rj−1ci)− (rjci+1) + (rj−1ci+1),

где для удобства считаем r0 = 0 и cn+1 = 0.
Теперь введём динамическое программирование. Пусть dp[x] — количество способов корректно

выбрать клетки, учитывая только первые x ограничений. Изначально dp[0] = 1. При переходе к
следующему ограничению либо мы не выбираем ни одной клетки, начинающейся в этом месте, либо
выбираем одну клетку с отрезком [i, j]. Получаем формулу

dp[j + 1] = dp[j] +

j∑
i=1

dp[i− 1] · cnt[i][j].

Подставляя выражение для cnt[i][j] и раскрывая скобки, получаем

dp[j + 1] = dp[j] + (rj − rj−1)

j∑
i=1

dp[i− 1] (ci − ci+1).

Если поддерживать сумму

Sj =

j∑
i=1

dp[i− 1] (ci − ci+1),

то переход считается за O(1), и вся динамика работает за линейное время.

Страница 5 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Итоговый ответ равен
dp[n] · 2K mod (109 + 7),

где K — количество клеток, не покрытых ни одним ограничением. Общая асимптотика решения
составляет O(n log n) из-за сортировки ограничений.

Для решения только подзадач 6–8, достаточно было реализовать динамику за O(n2).
Также для подзадачи 9 можно было реализовать решения, которые работают за более долгое

время, например O(n+m)

Задача 4. Прыжки по вершинам
Для начала сформулируем условие более формально: для каждого отрезка зубцов необходимо

было определить количество рёбер в строго выпуклом вверх маршруте из начала отрезка в конец,
построенном на точках отрезка, таком, что все точки отрезка находятся под ним. Видно, что такой
маршрут всегда существует и единственен.

Подзадача 1. n, q ⩽ 300. Здесь можно было для каждого отрезка запроса восстанавливать по-
следовательность прыжков честно, каждый раз выбирая подходящий прыжок. Заметим, что под-
ходящий прыжок — это прыжок с наибольшим возможным углом (и из всех таких — с наибольшей
длиной). Получаем решение, работающее за O(qn2).

Подзадача 2. n, q ⩽ 5000. Здесь можно было заметить, что ответ на каждый вопрос можно
вычислять за линию от длины отрезка при помощи стека. Делать это будем следующим образом:
заведём стек, в котором будем хранить предполагаемые зубцы маршрута Пети. Если при добавлении
очередного зубца в стек оказывается, что последний прыжок Пети будет иметь не меньший угол,
чем предпоследний, выкинем последний зубец из стека и выполним проверку ещё раз. Нетрудно
заметить, что такой алгоритм строит искомый выпуклый маршрут. Получаем решение, работающее
за O(qn).

Подзадача 3. hi ⩽ 10 Обозначим за h максимальную высоту зубца. Пусть мы хотим ответить на
запрос [l, r]. Найдём вторую после l точку маршрута. Заметим, что из всех точек одинаковой высоты
всегда оптимально будет выбрать самую близкую к l или самую дальнюю от неё. Давайте среди
оптимальных точек каждой высоты найдём вторую точку маршрута (для каждой из n точек самую
близкую точку данной высоты слева и справа можно предподсчитать за O(nh) суммарно). При этом
заметим, что точек в маршруте будет O(h), значит, суммарное время работы будет O(nh+ qh2).

Для полного решения нам понадобится следующая идея: пусть мы знаем зубцы, по которым
будет прыгать Петя на отрезке от зубца i до зубца k, а также от зубца k до зубца j. Научимся быстро
находить набор зубцов на пути от i до j. Легко видеть, что искомый набор состоит из префикса
зубцов на пути от i до k и суффикса зубцов на пути от k до j. Давайте будем перебирать длину
искомого префикса по возрастанию длины, а для каждого префикса — длину искомого суффикса
(тоже по возрастанию длины) и проверять, что многоугольник с заданными префиксом и суффиксом
будет выпуклым. Получаем, что «слияние» двух оболочек будет работать за O(n2). А если заметить,
что оба перебора можно заменить на бинарный поиск — за O(log2 n).

Подзадача 4. Один конец отрезка находится в левой половине массива, другой — в
правой. В этой подзадаче для каждого отрезка нам, по сути, нужно слить его «левую» и «правую»
части (относительно середины массива) с помощью описанной выше идеи. Но для этого нам нужно
уметь эффективно делать бинпоиск по этим частям. Воспользуемся следующей идеей. Начнём от
середины массива и будем идти вправо, поддерживая стек пути, как в подзадаче 2. Тогда на i-м
шаге мы будем иметь в стеке путь Пети до i-го с середины элемента. Давайте назовём предком i-го
элемента предшествующий ему элемент в стеке в этот момент (т.е. предпоследний зубец на пути от
середины до i). В результате мы получим дерево, в котором путь от корня до i-го элемента совпадает
с путём Пети от середины до него. Насчитав на этом дереве двоичные подъёмы (и сделав такое же

Страница 6 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

дерево для левой половины), мы сможем делать нужный нам бинпоиск. Получаем O(n log n) на
предподсчёт и O(q log2 n) на все вопросы.

Подзадача 5. n, q ⩽ 5 · 104. В эту подгруппу можно сдавать неэффективные версии полного
решения (в том числе неэффективные вариации бинпоиска по путям, без деревьев).

Подзадача 6. Полное решение. Применим метод разделяй-и-властвуй. Т.е. запустимся от всего
массива, рекурсивно ответим на запросы, целиком лежащие в левой и правой половинах, а потом
обработаем запросы, пересекающие середину, так же, как и в предыдущей подзадаче. Решение ра-
ботает за O(n log2 n+ q log2 n).

Задача 5. Покраска бруска
Заметим, что формула зависит от количества единичных сторон у бруска.

1. Если все стороны равны единице, то у нас ровно один единичный куб, у которого будет 6
покрашенных сторон.

2. Если две стороны равны единице (пусть это будут b и c), то мы имеем полоску из единичных
кубиков. В ней два крайних кубика будут иметь 5 покрашенных сторон, а остальные a− 2 —
4 покрашенные стороны.

3. Если ровно одна сторона имеет размер 1 (пусть c = 1; a, b ̸= 1), мы получаем . Тогда четыре
угловых кубика у бруска будут иметь 4 покрашенных стороны.

Кубики, лежащие на ребре (их будет 2(a−2)+2(b−2)), будут иметь по 3 покрашенных стороны.

У остальных (a− 2) · (b− 2) кубиков будет ровно 2 покрашенных стороны.

4. При отсутствии единичных сторон брусок будет распилен на 4 вида кубиков.

Восемь угловых кубиков будут иметь по 3 покрашенных стороны.

Остальные 4(a− 2)+4(b− 2)+4(c− 2) кубика на ребрах будут иметь 2 покрашенных стороны.

У кубиков на грани (всего их будет (a − 2)(b − 2) + (b − 2)(c − 2) + (c − 2)(a − 2)) будет одна
покрашенная сторона.

Оставшиеся (a− 2)(b− 2)(c− 2) внутренних кубиков не будет иметь покрашенных сторон.

Задача 6. Битовая магия
Условие x & b = b означает, что во всех битах, где у числа b стоит единица, у числа x тоже

обязана стоять единица. В битах, где у b стоит ноль, число x может содержать как 0, так и 1.
Для подсчёта количества подходящих чисел на отрезке [l, r] будем использовать стандартную

формулу:
ans(l, r) = count(r)− count(l − 1),

где count(N) — количество чисел x, таких что 0 ⩽ x ⩽ N и x& b = b.

Подзадачи 1–4

В подзадачах 1–4 ограничения достаточно маленькие r, b < 167, поэтому все решения можно
реализовать в лоб.

Для каждой подзадачи перебираем все числа x от l до r и проверяем условие (x& b) = b.
Такой перебор работает за O(r − l) и укладывается во все ограничения этих подзадач. Никаких

оптимизаций или динамики здесь не требуется.

Страница 7 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Подзадачи 5–6

В подзадачах 5–6 числа уже достаточно большие, но всё ещё помещаются в стандартный тип
long long.

Здесь используется уже полное решение, но без работы с длинной арифметикой:

• считаем функцию count(N) для одного числа N ;

• используем побитовую динамику по двоичному представлению числа;

• идём по битам слева направо и поддерживаем флаг, показывающий, что текущее число уже
стало меньше N .

Для каждого бита:

• если бит bi = 1, то в x можно поставить только 1;

• если bi = 0, то можно поставить 0 или 1 (с учётом ограничения x ⩽ N).

Так как количество битов ограничено (не более 60), решение работает за O(n) и полностью
проходит подзадачи 5–6.

Подзадачи 7–8

В этих подзадачах числа уже не помещаются в стандартные типы и имеют длину до 161000,
однако решение всё ещё основано на динамике.

Для вычисления count(N):

• переводим число N и маску b в двоичное представление;

• перебираем позицию i, в которой число x впервые становится строго меньше N ;

• проверяем, что префикс не противоречит маске b;

• считаем количество возможных продолжений на суффиксе.

Подсчёт количества допустимых вариантов на суффиксе выполняется прямым перебором битов,
поэтому для каждой позиции i требуется O(n) операций.

Общая сложность такого решения — O(n2), чего достаточно для подзадач 7–8, но недостаточно
для максимальных ограничений.

Подзадача 10

Подзадача 10 по сути аналогична предыдущим, но с дополнительным упрощением: b = 0.
Условие x& 0 = 0 выполняется для любого числа x ⩾ 0, поэтому подходят все числа на отрезке

[l, r].
Ответ равен:
(r − l + 1) mod (109 + 7),а все вычисления выполняются с длинными числами, заданными в

шестнадцатеричной системе.

Подзадачи 9 и 11

В подзадачах 9 и 11 длина чисел достигает 50 000 шестнадцатеричных символов, что соответ-
ствует примерно 200 000 битам. Решение с квадратичной сложностью здесь уже не проходит.

Основная оптимизация заключается в ускорении подсчёта количества вариантов на суффиксе.

• Заранее вычисляется массив suffix_zeros[i], равный количеству нулевых битов в маске b на
позициях j ⩾ i.

• Также предварительно считаются степени двойки 2k mod (109 + 7).

Страница 8 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Теперь при рассмотрении позиции i, в которой x становится меньше N , количество допустимых
продолжений на суффиксе считается за O(1) как 2suffix_zeros[i+1].

Это позволяет убрать внутренний цикл и свести вычисление count(N) к линейному времени.

Полное решение

Итоговый алгоритм:

1. Перевести числа l, r и b из шестнадцатеричной записи в двоичную.

2. Предварительно посчитать количество нулей в маске b на каждом суффиксе и степени двойки.

3. Реализовать линейный подсчёт count(N).

4. Получить ответ как (count(r)− count(l) + check(l) + (109 + 7)) mod (109 + 7), где check(l) про-
веряет, удовлетворяет ли число l условию l & b = b.

Время работы итогового решения — O(n), что позволяет пройти подзадачи 9 и 11 и получить
полный балл.

Задача 7. Скользящие окна

Подзадачи 1–3

Будем проходиться по всем окнам в запросах явно. Есть несколько вариантов искать на них
минимумы:

• поиск минимума на отрезке за его длину даёт решение за O(n2q) (подзадача 1)

• дерево отрезков на минимум — O(nq log n) (подзадача 2, подзадача 3 с эффективной реализа-
цией ДО)

• явный предподсчёт всех минимумов — O(nq + n2) (подзадача 2)

• разреженные таблицы (sparse table) — O(nq + n log n) (подзадача 3)

Подзадачи 3–4

Сгруппируем запросы по k и будем решать задачу для каждого k отдельно. Для фиксированного
k мы можем найти минимумы на скользящих окнах за O(n). После этого мы можем отвечать на
запросы либо за O(n) (O(n2 + nq), подзадача 3), либо за O(1) с префиксными суммами (O(n2 + q),
подзадача 4).

Подзадача 5

Аналогично решению для подзадачи 4, найдём минимумы на всех скользящих окнах длины k
за O(n), после чего посчитаем на них префиксные суммы, чтобы отвечать на запросы за O(1). Это
даёт решение за O(n+ q).

Подзадачи 6–7

Если все элементы массива равны 1 или 2, то минимум равен 2 только на отрезках, полностью
состоящих из 2. Для каждой позиции i найдём максимальное k, такое что отрезок [i; i + k − 1]
полностью состоит из 2.

Отсортируем запросы по возрастанию k. Для каждой позиции i будем поддерживать значение
минимума на отрезке [i; i + k − 1]. Действительно, с возрастанием k минимум на таком отрезке не

Страница 9 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

более чем единожды меняется с 2 на 1, и для каждого k мы можем сохранить список позиций, для
которых это произойдёт в этот момент.

Тогда ответ на очередной запрос равен сумме на некотором отрезке таких минимумов. Чтобы
эффективно найти её, будем поддерживать минимумы в дереве отрезков или дереве Фенвика. Это
даёт нам решение за O((n+ q) log n) (подзадача 6).

Аналогично, если элементы в массиве не превышают A, то с возрастанием k минимум на от-
резке [i; i + k − 1] изменится не более A − 1 раз. Найти k, при которых это происходит, можно,
пройдясь по массиву справа налево, поддерживая стек рекордных минимумов. Это даёт нам реше-
ние за O((n + q)A log n) (подзадача 7). Поскольку A ⩽ n, аккуратная реализация этого решения
также проходит подзадачи 1–2.

Подзадача 8

В решении прошлой подзадачи мы поддерживали значения минимумов на скользящих окнах
длины k. Заметим, что каждый элемент ai является минимумом на некотором подотрезке окон
(возможно, пустом). Для простоты скажем, что, если ai = aj , то мы считаем меньшим элемент с
меньшим индексом.

Пусть L и R — индексы ближайшего к i элемента, меньшего ai, слева и справа соответственно
(L = 0 или R = n+ 1, если такого не существует). Тогда ai будет минимумом на отрезке [l; r] тогда
и только тогда, когда L < l ⩽ i ⩽ r < R.

Для каждого k найдём количество окон длины k, на которых ai является минимумом:

• k, если k ⩽ min(R− i, i− L)

• min(R− i, i− L), если min(R− i, i− L) ⩽ k ⩽ max(R− i, i− L)

• R− L− k, если max(R− i, i− L) ⩽ k ⩽ R− L

• 0, если k ⩾ R− L

Таким образом, вклад i-го элемента в сумму минимумов на всех скользящих окнах длины k (ai,
умноженное на количество) — кусочно-линейная функция. Чтобы найти L и R для всех i, можно
воспользоваться известным линейным алгоритмом со стеком рекордов.

В подзадаче 8 нужно найти значение в фиксированном k суммы этих кусочно-линейных функций
по всем i. Сумма кусочно-линейных функций — это кусочно-линейная функция, которую можно
найти, если просуммировать по всем i изменения наклона в каждой точке k.

Подзадача 9 (полное решение)

В полном решении нужно найти сумму минимумов на некотором подотрезке окон, то есть мы
должны просуммировать не все кусочно-линейные функции, а только некоторый их подотрезок, и
дополнительно учесть значения на краях отрезка.

Рассмотрим запрос (l, r, k). Пусть ai — минимум на отрезке [l; l+k−1], aj — минимум на отрезке
[r − k + 1; r]. Если i = j, то ai будет минимумом на всех рассматриваемых окнах. Иначе ai будет
минимумом на min(i− l+1, Ri− l−k+1) окнах, aj будет минимумом на min(r− j−1, r−Lj −k−1)
окнах.

Теперь осталось просуммировать кусочно-линейные функции для позиций с i + 1 по j − 1.
В каждый момент времени мы можем хранить их как линейные функции, изменяя их в точках
min(Ri − i, i−Li), max(Ri − i, i−Li), Ri −Li. Тогда, построив дерево отрезков или дерево Фенвика
на линейных функциях, мы можем найти их сумму на отрезке. Подставив текущее значение k в
получившуюся линейную функцию, мы получим вклад элементов ai+1, . . . , aj−1.

Таким образом, мы получаем полное решение за O((n+ q) log n).

Задача 8. XOR Раскраска

Страница 10 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Подзадача 1. n ⩽ 2 Здесь достаточно простого разбора случаев.

Подзадача 2. n ⩽ 5 Здесь достаточно полного перебора всех различных раскрасок.
Переформулируем задачу как задачу раскраски графа: вершины соответствуют элементам мас-

сива A, и между вершинами x и y проводится ребро, если существует такой j, что (ax ⊕ bj) ⩽ x и
(ay ⊕ bj) ⩽ x. Требуется найти хроматическое число этого графа.

Подзадача 3. n ⩽ 15 Эта задача может быть решена с помощью поиска хроматического числа с
помощью динамики по подмножествам.

Подзадача 4. n ⩽ 100 Для решения этой подзадачи можно попробовать написать жадный поиск
раскраски. В произвольном порядке 1, 2 . . . , n будем красить элемент i в минимальный цвет, который
отличается от всех элементов < i соединенных с i ребром. Доказательство исходит из полного
решения.

Подзадача 5. n ⩽ 2 000 Здесь достаточно оптимизировать решение подзадачи 4 с помощью би-
тового сжатия.

Подзадача 6. n ⩽ 5 000 Здесь достаточно во время раскраски поддерживать объединение всех
S(i) для каждого цвета.

Будем решать задачу рекурсивно, двигаясь от старших битов к младшим. Рассмотрим функцию
решения для тройки (i, A,B), где учитываются только биты с номерами от i до 0. Если на каком-то
шаге массив A или массив B оказывается пустым, то ответ равен 0.

Для фиксированного бита i разобьём массивы по значению этого бита: X[0] и X[1] — элементы
массива A, у которых i-й бит равен 0 и 1 соответственно. Аналогично определим Y [0] и Y [1] для
массива B.

Если i-й бит числа x равен 0, то для любых a ∈ X[0] и b ∈ Y [1] значение (a⊕ b) уже превышает
x по i-му биту, и такие пары нас не интересуют. Поэтому задача распадается на две независимые:
для (i− 1, X[0], Y [0]) и (i− 1, X[1], Y [1]). В этом случае минимальное число цветов равно

max
(
ans(i− 1, X[0], Y [0]), ans(i− 1, X[1], Y [1])

)
.

Меньшее значение невозможно, а равенство достигается за счёт объединения раскрасок.
Теперь рассмотрим случай, когда i-й бит числа x равен 1. Если Y [0] пусто, то для любого элемен-

та из X[1] множество S(i) содержит все элементы массива B. Следовательно, никакие два элемента
из X[1] не могут иметь одинаковый цвет. Тогда ответ равен

|X[1]|+ ans(i− 1, X[0], Y [1]).

Аналогично рассматривается ситуация, когда Y [1] пусто.
Остаётся случай, когда оба множества Y [0] и Y [1] непусты. В этом случае любые два элемента

из X[0] конфликтуют между собой, и то же верно для любых двух элементов из X[1]. Значит,
допустимые цветовые группы могут быть либо одиночными элементами, либо парами, состоящими
из одного элемента из X[0] и одного элемента из X[1].

Однако не всякую такую пару можно образовать. Если элемент из X[0] содержит в своём множе-
стве S(i) хотя бы один элемент из Y [1], то он конфликтует со всеми элементами из X[1] и не может
входить в пару. Аналогично для элементов из X[1], которые содержат в S(i) элементы из Y [0].

Пусть p0 — количество элементов из X[0], которые не содержат в S(i) ни одного элемента из
Y [1], а p1 — количество элементов из X[1], которые не содержат в S(i) ни одного элемента из Y [0].
Эти величины можно посчитать, спускаясь по битовому бору.

Тогда максимальное число допустимых пар равно min(p0, p1), и ответ равен

|X[0]|+ |X[1]| −min(p0, p1).

Таким образом, рекурсивно обрабатывая биты от старших к младшим и разбивая массивы по
значениям текущего бита, можно найти минимальное число цветов, необходимое для корректной
раскраски массива A.

Страница 11 из 12

Всероссийская олимпиада школьников по информатике 2025–2026
Региональный этап, разбор задач

Подзадачи 7–8 Эти подзадачи можно пройти с помощью аккуратного разбора случаев или по-
иском p0, p1 за O(nm)

Подзадачи 9–10 Эти подзадачи можно пройти с помощью аккуратного разбора случаев или
перебора который учитывает некоторые идеи из полного решения. Также можно было справитсья
с помощью полного решения на поиском p0, p1 за O(nt), где t – количество различных элементов в
B.

Страница 12 из 12

