Школьный этап Всероссийской олимпиады школьников по физике 2012/13 учебный год

10 класс

Типовой вариант

1. На соревнованиях по лёгкой атлетике спортсмен прыгнул в высоту на h=2 м. Минимальная скорость спортсмена в этом прыжке была равна по модулю $\upsilon=1,2$ м/с. Пренебрегая силой трения о воздух, определите длину прыжка L. Ускорение свободного падения принять равным g=10 м/с 2 . (Заметим, что это – нетипичный спортсмен, он прыгает сразу и вверх, и в длину!!! Кроме того, его центр масс не достигает высоты h — на это и направлены все современные способы прыжков!)

Решение

Во время прыжка скорость спортсмена минимальна в верхней точке траектории и равна проекции его начальной скорости на горизонтальную ось ОХ $\upsilon=\upsilon_{0x}$. Из законов кинематики ($L=\upsilon_{0x}2t$; $h=\upsilon_{0y}t-\frac{gt^2}{2}$; $0=\upsilon_{0y}-gt$, где t – время полёта до верхней точки) следует, что дальность и высота прыжка соответственно равны

$$h = \frac{v_{0y}^2}{2g}$$
; $L = \frac{2v_{0x}v_{0y}}{g}$.

Отсюда получаем: $L = 2\upsilon\sqrt{\frac{2h}{g}} = 2\cdot 1, 2\cdot\sqrt{\frac{4}{10}} \approx 1,5\,$ м.

Ответ:
$$L = 2\upsilon \sqrt{\frac{2h}{g}} \approx 1.5 \text{ M}.$$

2. Когда рыбак массой M=80 кг садится в резиновую лодку, она погружается в воду на половину своего объёма. Сможет ли он перевезти в этой лодке на другой берег реки свою жену и сына, если их массы равны, соответственно, $m_1=60$ кг и $m_2=30$ кг? Объём лодки равен V=200 л. Плотность воды $\rho=1000$ кг/м 3 .

Решение:

Пусть масса резиновой лодки равна m_0 , а её объём V. Тогда, если в лодке находится один рыбак, то $(M+m_0)g=\rho g\frac{V}{2}$.

Для того, чтобы перевезти на другой берег трёх человек, лодка не должна утонуть, т.е. $M+m_0+m_1+m_2=\rho\frac{V}{2}+m_1+m_2\leq \rho V$, откуда получаем $m_1+m_2\leq \rho\frac{V}{2}$, или, подставив числовые данные:

$$90 \le 1000 \cdot 0.1 = 100$$
.

Равенство верно, следовательно лодка не потонет.

Ответ: Рыбак сможет перевезти в лодке жену и сына.

3. Стоя у бортика катка, мальчик бросил горизонтально мяч массой m=0.6 кг, сообщив ему скорость $\upsilon=10$ м/с. Какую скорость приобретёт мальчик, если он бросит этот камень, стоя на гладком льду и совершив при этом такую же работу? Масса мальчика M=30 кг.

Решение:

Работа мальчика при первом броске равна $A = \Delta E = \frac{m\upsilon^2}{2}$, где υ – скорость мяча. При втором броске $A = \frac{m\upsilon_1^2}{2} + \frac{M\upsilon_2^2}{2}$, где υ_1 и υ_2 – скорости мяча и мальчика после

второго броска. По закону сохранения импульса $0 = m\upsilon_1 - M\upsilon_2$. Отсюда получаем $\frac{m\upsilon^2}{2} = \frac{\left(M^2 + mM\right)\upsilon_2^2}{2m}$, или окончательно для скорости мальчика:

$$v_2 = \frac{mv}{\sqrt{M^2 + mM}} \approx 0.2 \text{ m/c}.$$

Otbet:
$$v_2 = \frac{mv}{\sqrt{M^2 + mM}} \approx 0.2 \text{ m/c}.$$

4. Ученик налил $m_1 = 3$ л воды, имеющей температуру $t_1 = 80$ °C, в кастрюлю. После установления теплового равновесия с кастрюлей вода охладилась до температуры $t_2 = 60$ °C. Если в другую такую же кастрюлю налить некоторое количество воды при температуре $t_3 = 100$ °C, то она остынет до $t_4 = 40$ °C. Считая, что пустые кастрюли имеют температуру $t_0 = 20$ °C и что потери теплоты во время установления равновесия несущественны, определите массу воды m_2 , налитой во вторую кастрюлю. Плотность воды равна $\rho = 1000$ кг/м³.

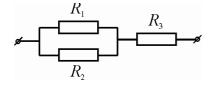
Решение:

Запишем уравнения теплового баланса в первом и во втором случаях ($C_{\rm k}$ – теплоёмкость кастрюли, C – удельная теплоёмкость воды)

$$C_k(t_2 - t_0) = m_1 C(t_1 - t_2);$$

 $C_k(t_4 - t_0) = m_2 C(t_3 - t_4).$

Отсюда получим искомую массу воды:


$$m_2 = m_1 \frac{(t_4 - t_0)(t_1 - t_2)}{(t_3 - t_4)(t_2 - t_0)} = \rho V \frac{(t_4 - t_0)(t_1 - t_2)}{(t_3 - t_4)(t_2 - t_0)} = 3 \cdot \frac{20 \cdot 20}{60 \cdot 40} = 0,5 \text{ Kg}.$$

Ответ:
$$m_2 = \rho V \frac{(t_4 - t_0)(t_1 - t_2)}{(t_3 - t_4)(t_2 - t_0)} = 0.5 \text{ K}\text{Г}.$$

5. Имеются 3 резистора, сопротивления которых равны $R_1 = R_2 = 20$ Ом, $R_3 = 30$ Ом. Из всех этих резисторов изготовлен нагревательный элемент, который при подключении к источнику напряжением U = 200 В развивает мощность P = 1 кВт. Определите, каким образом соединены резисторы в нагревателе, и нарисуйте это соединение.

Решение:

По закону Джоуля–Ленца мощность элемента равна $P=\frac{U^2}{R}$, то есть сопротивление нагревателя $R=\frac{U^2}{P}=40\,\mathrm{Om}$. Для этого необходимо, чтобы сопротивления были соединены следующим образом:

